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Abstract: Large-eddy simulation of passive scalar mixing by a fully three-dimensional round incompressible
turbulent jet is evaluated using the Inertial LES methodology with multifractal subgrid-scale modeling. The
Inertial LES approach involves the direct calculation of the inertial term ui uj in the filtered incompressible
Navier-Stokes equation and the scalar flux term uj φ in the filtered advection-diffusion equation, using models
for the subgrid velocity field usgs and the subgrid scalar-concentration field φsgs. In this work, the models are
based on the multifractal structure of the subgrid enstrophy 2Qsgs(x, t) ≡ ωsgs · ωsgs and scalar-dissipation
χsgs(x, t) ≡ D∇φsgs ·∇φsgs fields, respectively. No artificial viscosity or diffusivity constructs are applied and
no explicit dealiasing is performed. Numerical errors are controlled by the application of an adaptive backscatter
limiter. The present work summarizes the initial evaluation of the Inertial LES approach in the context of the
round turbulent jet, including examinations of jet self-similarity and the scale-to-scale distribution of kinetic
and scalar energy in the jet far field. These inquiries confirm that the Inertial LES method accurately recovers
the large scale structure of this complex turbulent shear flow.

1 INTRODUCTION

The free round turbulent jet is perhaps the most extensively studied of the canonical free turbulent shear
flows. Turbulent jets are important in a variety of industrial applications, such as fuel injectors, furnaces and
rocket engines, as well as in high energy-density phenomena such as astrophysical jets and inertial confinement
fusion. The enormous range of length and time scales generated by such flows, however, makes high-resolution
laboratory or field study of most of them difficult or impossible. The multiplicity of scales also prevents direct
numerical studies (DNS) of such flows, since fully resolving all dynamically-significant scales would require
computational power well beyond present-day capabilities. Currently, therefore, the most promising method to
study such flows on the computer is through large-eddy simulation (LES), in which only the larger turbulent
scales are calculated explicitly, while the smaller, unresolved scales are modeled. However, most presently-
available modeling techniques lack the fidelity necessary for LES to become a more widely-accepted tool for
scientific and engineering work.

2 INERTIAL LES METHOD

2.1 Multifractal subgrid modeling

Recently, Inertial LES with multifractal subgrid modeling has been proposed as a new, physically-based tech-
nique for obtaining high-fidelity large-eddy simulations [1, 2]. In this approach, the filtered Navier-Stokes
momentum equation, given by

∂ ui

∂t
+

∂

∂xj
ui uj − ν

∂2 u

∂xj∂xj
= 0 , (2.1)

is solved by explicitly calculating the filtered inertial term ui uj . Similarly, the filtered advection-diffusion
equation, given by

∂φ

∂t
+

∂

∂xj
uj φ −D

∂2φ

∂xj∂xj
= 0 , (2.2)

is solved by explicitly calculating the filtered scalar-flux term uj φ. This approach represents a “return-to-first-
principles” in LES methodology, since the unclosed terms in (2.1) and (2.2) are calculated in their original
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forms, i.e., as nonlinear stresses, rather than as linear stresses modeled with the gradient-diffusion hypothesis,
the approach taken by most current LES methods. The nonlinear terms may be expanded, giving

ui uj ≡ ui uj + ui usgs
j + usgs

j uj + usgs
j usgs

j (2.3)

uj φ ≡ uj φ + uj φsgs + usgs
j φ + usgs

j φsgs , (2.4)

indicating that the terms involve interactions between resolved and subgrid velocities and scalar fields. Thus,
the Inertial LES approach requires models for the subgrid velocities usgs

j and scalar fluctuations φsgs.
Here, these subgrid models are derived from the multifractal structure present in hydrodynamic turbulence

at inertial-range scales. This structure has been confirmed in numerous previous studies [7, 11]. Multifractal
structure in the enstrophy field, 2Q(x, t) ≡ ω · ω, is used first to develop an analytical model for the subgrid
vorticity field ωsgs(x, t). The Biot-Savart law is then employed to relate the analytical model for ωsgs(x, t) to
the subgrid velocity field usgs

j (x, t). The analytical model for usgs
j (x, t), in turn, may be simplified to obtain a

computationally tractable model for the subgrid velocity field usgs
j (x, t). A similar approach is taken to derive

a model for the subgrid scalar-fluctuation field φsgs(x, t) from multifractal structure present in the scalar-
dissipation field χ(x, t) ≡ D∇φ · ∇φ. Here, the Green’s function operator is employed to relate an analytical
model for the subgrid scalar-gradient field ∇φsgs(x, t) to the subgrid scalar-fluctuation field φsgs(x, t), from
which a computational model for φsgs(x, t) is derived. In their final forms, both models involve transforming
the smallest-resolved scale ∆ velocity and scalar fields, as

usgs
j (x, t) ≈ B u∆

j (x, t) (2.5)

φsgs(x, t) ≈ D φ∆(x, t) (2.6)

where B and D are functions of the number of subgrid scales within an LES grid cell. Detailed development of
the subgrid velocity and scalar models are provided in [1] and [3]. Prior evaluation of the Inertial LES method
indicates that it reproduces more accurately the local momentum and energy transfer between the resolved
and subgrid scales than traditional subgrid modeling approaches [2, 3].

2.2 Backscatter limiting

Numerical errors in the Inertial LES method are controlled here by an adaptive backscatter limiter, a refinement
of the technique introduced by Burton & Dahm [2]. That work demonstrated that numerical errors may
be effectively controlled by selectively reducing the magnitude of those nonlinear stresses in (2.3) and (2.4)
responsible for the reverse transfer of energy from the subgrid to the resolved field during a simulation. To
implement such a limiter, the filtered inertial stresses ui uj responsible for backscatter of kinetic energy are
first identified as those that satisfy

u(i) u(j) S(ij) > 0 , (2.7)

where 2 Sij ≡ (∂ui/∂xj + ∂uj/∂xi) and where ( · ) indicates that no summation is implied. The magnitude of
the stress components satisfying (2.7) then are reduced by a factor CB giving

ûi uj ≡ CB ui uj , (2.8)

and the reduced inertial stress is then applied to the momentum update in (2.1). A similar strategy is applied
to the passive-scalar equation of (2.2). There, backscatter of scalar energy will occur whenever

u(j) φ∇φ(j) > 0 . (2.9)

Where (2.9) is satisfied, the magnitude of the scalar-flux component is reduced by a factor Cφ giving

ûj φ ≡ Cφ uj φ . (2.10)

The reduced scalar-flux component is then applied to update the scalar field in (2.2). For both the momentum
and the scalar updates, this strategy has the effect of canceling numerical errors arising during the simulation.
In the current approach, the values CB and Cφ are determined locally during the simulation.
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3 COMPUTATIONAL METHOD

The numerical scheme consists of a standard pressure-correction algorithm on a regular cartesian mesh with
primitive variables stored at staggered locations following the method of Harlow & Welch [9]. All spatial
derivatives are discretized using 4th-order centered operators, while an explicit 3rd-order Runge-Kutta scheme
is used for temporal integration. All simulations employ a resolution of Nx × Ny × Nz ≡ 384 × 128 × 128
points, with x the downstream direction. Cross stream directions are periodic over the interval L = 2π. This
configuration permits an exact, direct solution of the Poisson equation using standard FFT methods. At the
jet outflow, the nonreflective boundary condition of Tang & Grimshaw [13] is implemented. The jet inlet profile
consists of a hyperbolic tangent function to which a small co-flow Uco = 0.075 Uo has been added. This has
been shown to be a realistic approximation of the actual inlet found in round jets [8]. The inlet width is set
at D ≡ π/5, which in conjunction with the velocity co-flow, has been shown to minimize the impact of the
cross-stream periodicity on the downstream development of the jet [5]. All simulations are performed at a
relatively high ReD of 25, 000, which provides for significant unresolved turbulence in the jet’s subgrid field.

4 RESULTS

The present work reports only on the initial validation studies of the Inertial LES method in the round turbulent
jet configuration, focusing on the fidelity with which the large-scale features of the velocity and scalar fields are
reproduced. Figure 1 shows two-dimensional extracts at the jet centerline in the x−z plane for the vorticity
magnitude field (top) and scalar-fluctuation field (bottom). These provide a qualitative assessment of the flow
field generated by the Inertial LES method. In each frame, zero magnitude is depicted in black while the
highest values are depicted in white. The graphics show the characteristic decay of the jet’s core by ∼ 5D
downstream. The angle subtended by the jet expansion cone from the centerline is estimated to be 13.4 ◦, close
to the value of 12 ◦ reported by prior studies [6].

As the round turbulent jet is known to develop a scale-similar velocity profile in the far-field region [14],
it is useful to examine how well the Inertial LES approach attains and preserves a self-similar state. Figure
2 illustrates four velocity-component profiles as functions of the radial-similarity variable η ≡ r/(x − xo) at
five planes, x/D = [ 17.5, 20, 22.5, 25, 27.5, 30] , in the far-field region (clockwise, from upper left): streamwise
mean velocity Ux(η), streamwise fluctuation velocity ux(η); radial fluctuation velocity ur(η); and azimuthal
fluctuation velocity uθ(η). Each of the depicted distributions shows good collapse at the given downstream
planes, indicating that the Inertial LES system reaches and preserves self-similarity, consistent with prior
experimental studies [10]. The relatively weaker convergence near the centerline of the jet reflects the smaller
number of sampling locations at small η and would likely improve over longer simulation times. Figure 3
examines the self-similarity of the scalar concentration field as a function of η from statistics gathered at the
same five cross-stream planes. Four moments of the scalar concentration field are evaluated (clockwise, from
upper left): mean scalar concentration 〈φ〉(η); root-mean-square scalar fluctuations φrms(η); scalar skewness
S3(η); scalar flatness K4(φ)(η). As compared to the velocity field statistics, the radial distributions for the
scalar-field statistics show better collapse at η values near the jet centerline.

Figure 4 illustrates extracts from timeseries data of the velocity (top) and scalar (bottom) fields on the jet
centerline at x/D = 27.5, collected over approximately 1000 timesteps after the jet had reached a statistically-
stationary state. Subtle differences can be detected between these timeseries profiles, as the scalar field appears
to exhibit the “ramp-cliff” structures that typically characterize scalar fields driven by large-scale anisotropic
forcing, like the present shear flow [15]. Figure 5 shows the power spectra for the full velocity and scalar
timeseries data sets; (left) spectrum of the kinetic energy field vs. time, (right) spectrum of the scalar energy field
Eφ(k) vs. time, where 2Eφ = φ2(t). A −5/3 reference slope is provided for comparison. Both figures indicate
that the kinetic and scalar energy distributions slightly exceed the k−5/3 scaling predicted by Kolmogorov
theory [4].

The present investigation confirms that the Inertial LES method accurately recovers the significant large
scale structure of both a fully three-dimensional round turbulent jet and the scalar concentration field mixed
by it. In the future, the Inertial LES method with multifractal subgrid-scale modeling will be used to study
passive-scalar mixing at high Schmidt number (Sc � O(1)) in a three-dimensional round turbulent jet.
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Fig. 4.1. Two-dimensional cross-sections from fully three-dimensional large eddy simulation of round turbulent jet at

ReD ≈ 25, 000 using the Inertial LES method with multifractal subgrid-scale modeling. (Top) Vorticity field magnitude

with black as |ω| ≡ 0 and white as |ω| ≡ 4.32.(Bottom) Scalar fluctuation field with black as φ ≡ 0 and white as φ ≡ 1.

From the jet virtual origin, the jet cone of expansion subtends an angle from the centerline of θ ≈ 13.4 ◦, close to the

estimate of θ ≈ 12 ◦ reported in experimental studies by Dowling & Dimotakis [6].
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Fig. 4.2. Cross-stream profiles of the first four moments of the velocity fluctuation field vs. similarity variable η ≡
r/(x− xo). Clockwise from upper left: mean streamwise velocity, 〈u〉(η); streamwise fluctuation, ux(η); radial velocity

fluctuation, ur(η); azimuthal velocity fluctuation, (η). Reasonable collapse of the scaled cross-stream profiles is obtained

at the five planes examined in the jet far field, x/D = [ 17.5, 20, 22.5, 25, 27.5, 30 ].

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

η = r / ( x − x
o
 )

φ(
r)

 / 
φ c

 x/D = 17.5
 x/D = 20
 x/D = 22.5
 x/D = 25
 x/D = 27.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

η = r / ( x − x
o
 )

θrm
s  / 

θ c

 x/D = 17.5
 x/D = 20
 x/D = 22.5
 x/D = 25
 x/D = 27.5

0 0.05 0.1 0.15 0.2
−1

0

1

2

3

4

5

6

7

8

9

10

η = r / ( x − x
o
 )

< 
θ3  >

 / 
< 
θ2  >

1.
5

 x/D = 17.5
 x/D = 20
 x/D = 22.5
 x/D = 25
 x/D = 27.5

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

40

η = r / ( x − x
o
 )

< 
θ4  >

 / 
< 
θ2  >

2

 x/D = 17.5
 x/D = 20
 x/D = 22.5
 x/D = 25
 x/D = 27.5

Fig. 4.3. Cross-stream profiles of the first four moments of the scalar concentration field vs. similarity variable η ≡
r/(x − xo). Clockwise from upper left: mean scalar concentration, 〈φ〉(η); scalar fluctuation r.m.s., φ

′
(η); scalar-

fluctuation skewness, S3(φ
′
); and scalar-fluctuation kurtosis, K4(φ

′
).
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Fig. 4.4. Sample timeseries extracts of the stream-wise velocity field (top) and scalar concentration field (bottom) from

fully three-dimensional large eddy simulation of round turbulent jet at ReD ≈ 25, 000 using the Inertial LES method

with multifractal subgrid-scale modeling. Illustrated timeseries were gathered at the jet centerline at the downstream

plane x/D = 27.5 . Note appearance of subtle “ramp-cliff” structures in the scalar timeseries, indicating large scale

anisotropic forcing of the scalar field, as discussed in [15].
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Fig. 4.5. Spectra from timeseries of the stream-wise velocity field (left) and scalar concentration field (right) from fully

three-dimensional large eddy simulation of round turbulent jet at ReD ≈ 25, 000 using the Inertial LES method with

multifractal subgrid-scale modeling. Solid line in each frame provides a −5/3 slope for comparison, indicating that both

spectra slightly exceed the value predicted by Kolmogorov theory [4].




